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I. Introduction

In filtering and smoothing, information carrying data are extracted from noisy
observations. The formalization and solution of the filtering and smoothing problems are
well established, when the joint process that characterizes the relationship between
information and noise data sequences is statistically well known (see Kalman (1960,
1963), Kolmogorov (1941), and Wiener (1949)), or parametrically known. Linear filtering
and smoothing operations are then by far the most widely used, due to their simplicity in
implementation. In practice, however, the occurrence of occasional extremely erroneous
data values, called outliers, are frequently observed. Furthermore, linear data operations
are notoriously nonresistant to such outliers, inducing dramatic performance instabilities.
The purpose of this paper is to establish a theory for outlier resistant filtering and
smoothing procedures, and to provide specific such data operations for Gaussian
information processes, and additive, nominally Gaussian, noise processes. The initial
steps of our presentation are based on the theory of qualitative robustness (see Boente et
al (1982), Cox (1978), Hampel (1971), Papantoni-Kazakos and Gray (1979), and
Papantoni-Kazakos (1981, 1987, 1984a, 1984b)). Our approaches on pertinent

performance criteria are as those in Hampel et al (1986).

Problems of nonlinear filtering are considered in the paper by Masreliez and Martin
(1977). In particular, the above authors present a robustification procedure for Kalman
filters operating on the outputs of linear dynamical systems. Discussion of their results

and comparisons with ours are given in Section 4 and 6 of this paper.

A general theory and methodology for nonlinear smoothers, acting on stationary

processes, is developed by Mallows (1980). The issue of primary concern there is the
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decomposition of smoothers into linear and nonlinear parts and the study of their
properties. Furthermore, the problem of outlier resistance is examined, using as indicator
of resistance an extension of Hampel’s concept of the breakdown point. However,
explicit design issues are not undertaken. Relevant results on the design and analysis of
specific outlier resistant filters and smoothers for stationary processes can be found in

Tsaknakis (1986).

Ne In section 2 of this paper, we first present a formalization of the filtering and
smoothing problem under consideration. Then, we define outlier resistance for filtering
and smoothing operations and present certain sufficient conditions for resistance of such
operations. In section 3, a two person game formalization is adopted for fixed finite
length operations and the corresponding least favorable structure is derived. In Section
4, the above structure is used for the design of a causal recursive filtering operation when
the nominal information process is autoregressive and the nominal noise process is i.i.d.
Then the asymptotic properties of the resulting operation are studied on a stationary
® environment, in terms of asymptotic outlier resistance, asymptotic stationarity and

asymptotic mean square error at the nominal model.

In section 5, we define the breakdown point and the influence function of a filtering
or smoothing operation. Both these quantities are defined in such a way as to reflect
important sensitivity aspects of the mean square error, induced by the filtering or
smoothing operation, to the action of outliers. Then, we continue with the explicit
evaluation and study of the breakdown point and influence function of the filter presented

in section 4. Section 6 is devoted to the numerical evaluation and comparison of the

‘. proposed filter in relationship to an existing one, for specific numerical examples.
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. Finally, in section 7, we briefly present some conclusions.
¥,
( N
: 2. Preliminaries
: We consider real-valued discrete-time information and noise stochastic processes,
' R denoted respectively by {Xn, neZj, {Wn, neZ}, where Z is the set of integers. The
- observation process, {Y_, neZ} is given by the equation.
L
Y =X +W_, neZ (1
n n n
: It will be assumed that the information and noise processes are independent. Then a
A complete statistical description of the model (1) is provided by the probability measuresof
{ Xn}, { Wn}, denoted by o Ky respectively. The probability measures of the
;'.A observation process {Y }, denoted by W, is expressed as the convolution W = H *H,
{ K
y and the joint probability measure of {Y , X }, denoted by W, is expressed as the product
u({Yn, Xn})zus({Xn})uN({Yn—Xn]). Assuming that [Xn} has finite second order
' ® moments, let us consider the minimum mean square estimation of the information
y 1
~ process value X, given a finite length [ observation sequence {yi, ym_l}, denoted as y
. for short. If i+/-1<0, we refer to causal filtering or simply filtering. If i+/-1>0 we refer
L
¢ to noncausal filtering or smoothing. Given the measure {4, the minimum mean square
e estimator, 5(0‘ of X, is the conditional expectation
-.;
‘ ' ~ { !
X,y )=E{X/y .1} 2)
{ - . . .
3 which is a function of the sequence y whose specific form is determined by p. If u is
g N ! .
(. Gaussian, X (y ) is an affine transformation of y . The induced by X mean square error
k. is denoted by e(u,)ko), and is a functional of y and X() given by the expression
’: 3
[
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::I The occurrence of occasional erroneous values in the noise process [Wn}, called
- outliers, induces uncertainties in the description of the measure p,.. That induces further
»
' Rd uncertainties in the measures i and Hy. The initial issue here is the qualitative
o
* characterization of those uncertainties. A particularly useful tool for describing
L
“ uncertainties of probability measures is the Prohorov distance (see Hampel (1971), Boente
e
P et al (1982), Papantoni-Kazakos (1987, 1984b)), whose definition is given below.
o Let p(,') be a metric in R", and let v,.v, be probability measures defined on the
-l
s Borel field of (Rn,p). Let N be the class of all joint measures, v, whose marginals are v,
o
_:: and vy The Prohorov distance Hp(v Y 2) is defined as follows
(s
’F:
( N4 I (v,.v,) = inf inf{8>0 : v(e,B : p(c,B)>8)<B) @
: . veN
.
-, where a,B denote elements of R
149
1,
geo The selection of the metric p(-,) reflects the pattern according to which the outliers
E:: corrupt the nominal process. For the purpose of this paper, we select a metric which
,
- corresponds to outliers occurring in batches, or bursts of size m, m being a fixed design
.
- parameter. Such a metric is defined as follows: (see Papantoni-Kazakos (1984a, 1984b)).
- S ) -k
- For a,BERn. let o, B be sequences generated by repetitions of o and B. Also, let o,
.\- denote (at, * - , &k),jSk. Then, we define the metricp__(-,7) in R" as
kg J nm
4
S
: ) -1 ) ~+m-1 . i+m-1
N pn‘m(a,[}) =inf{d>0:n [# 1 (3 , [}i ) > 0] <§) (s)
. lI i:l....n
’.
where, the auxiliary metric Y_(-,) is defined as
» 4
q:
Y L i
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: In the sequel, we use the Prohorov distance in (4) with the metric (5) to give a
'[ o formal definition of outlier resistant estimators. Let Hone Moy denote the nominal
o measures of the noise and observation processes respectively, and u  denote the nominal
v

- joint measure of the observation and information processes. Also, let M. =H_ be the
. N : :

‘ fixed information process measure.

<

% . _ . . .

) An estimator Xy ) of X, from the observation sequence y is called outlier
o resistant or qualitatively robust at Moy if

-

- *1>0, there is an £>0 such that

A

. I1 (uoN‘ Hy) < € implies Ie(uo,Xo)—e(p,Xo)l<n

(e -

:: for every n.

- Notice that p_ and W are fully determined from Moy and py.

3 Considering stationary and ergodic processes, the limit / im l'Ip (K N Hy) 1s equal
N n—oo =

_: to the Prohorov distance I'Iy (uoN,uN). Since the Prohorov distance I'Iy (-,’) metrizes the
rE . m . 5 1

{ weak topology of the probability measure on (R, Y,)» an estimator X (y ) of length /<m
. is resistant, if it is pointwise continuous and bounded. Such estimators are constructed in
, section 3. However, for />m, these conditions are no longer sufficient; appropriate
1} C,

" resistant estimators of asymptotically large length are constructed in section 4.

b Consider now the m-dimensional restriction of the nominal measure B and let it
. . m m | . . .
(A% be denoted by p . Furthermore, assume that M N is absolutely continuous with density
. 5

¢ -
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) f - Then, the €-contaminated class of densities
{ K

j m m m m m . . . .

F @®= {fN = (l—e)foN +¢eh , h arbitrary m—dimensional density} @

?

v . . ,

0 1s contained in the class FIY (M noHy) < € of measures Hy» for any €, O<e<l. The constant
‘ m
o € can be interpreted as frequency of outlier occurrence.

L m . o . _

g The class FN () of noise densities induces the following class of joint m-
D)
ne dimensional densities of the observation and information processes.

P
’..: m m m m m m m _m, m m m m m m m
R F@®={f £ x)=0-f (x ) (y x)+ef (x)h (y —x) (8)

7 (g m .

h  arbitrary}

- m . C . ) .

: Class F (g) contains all the necessary statistical information for constructing estimators
( @ of length at most m and will be used in the forthcoming section as the model for
8 statstical contamination.

L ° 3. Construction of Filtering and Smoothing Operations - Step 1
3 In this section we derive a finite length robust estimator of the information process

: given observation sequence of length /<m, where m corresponds to outlier patterns, as

'

(K discussed in the previous section. The derivation is based on a two-person game
. p p g
- formulation of the estimation problem, with payoff function the induced mean square
[ error. To fix ideas, suppose that X is to be estimated from a length / observation

:.“' i+l -1 { . . .. .

. sequence v, , denoted as y for short (assume i<O<i+/-1). The joint density of x, and

o ! ! . L .

K y . denoted by f(x .y ). belongs to an e-contaminated class obtained from the appropriate

o

m ~ -

i restriction of the more general class F (€), as defined in (8). We assume that the
l‘ . . . > - . -
N information process is a fixed zero mean Gaussian process and that the nominal noise
'
oy
‘)
~ 6

q
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process is also zero-mean Gaussian. Given an estimator X (y ) and a joint density
! ~ . ) ) 0 2
f(x,.y ), the mean square error e(f,XO) of X, at f is the expectation E{[XO—XO(Y )] /f).
The objective is to find a density-estimator pair (f*,f(o) that constitutes a saddle point,

ie.

e(f.X,) < e(f*X ) <e(f*X)) ®

for every )20 measurable and feF m(fs)

Unfortunately, a saddle point solution of the above game for the class F m(%:) does

not exist. In particular, the quantity inf sup e(f,f(o) is strictly larger than
X, feF"(e)

o . . . m
sup inf e(f,XO) and the latter supremum with respect to f cannot be attained in F (g).
feF"(e) X,

This is due to the non-tightness of F m(e) which allows probability masses to escape to
infinity. For this reason we consider an enlargement of the class Fm(e) to include all

densities of the form (we denote the enlarged class by the same symbol):

Fh©e) =" f (X )=(1-8)f o (¢ f oy —x" ) +ef (<R () (10)
. arbitrary m—dimensional density }

The enlarged class Fm(s) in (10) is equivalent to considering outliers affecting the
observation process directly, not via the additive noise process, as is the case with the
class in (8). However, the minimax value of the game for the class in (8) is the same as
the minimax value for the class in (10). Furthermore, a saddle point solution of the game
(9) always exists within the class Fm(t—:) in (10). From now on we consider only the class

Fm(e) as defined in (10), and we seek the saddle point solution of the game in this class.
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e
From the results in Papantoni-Kazakos (1984a) we conclude that the saddle point of
L 4
the game can be found by solving
Sl;lnp ifxfe(f,XO) an
® feF (). X,
The expression infe(f.)A(O) represents the minimum mean square error at the density f and
X,
L4 can be written as
2
o, - I(f)
¢ 2 2
where, c, = E(XO) is the fixed variance of XO, and
2 !
() = E(E" (XY f)/f) =
4 ! 2
(Jxof (g )dxg)
R' |
!
() R f(xgy )dx,
Rl
l
Considering the form of f(x,y ) in terms of the nominal and contaminating

densities, as derived from (10), and the zero mean assumption of the nominal densities,

the quantity I(f) can be written as a functional of the /-dimensional restriction of the
. . ! . l

density of the observation sequence y . Let us denote the latter density by f, (y ). After

some algebra, we obtain




G
(Tl 2
(1-e) \(y )P y)) [
o ) =Kfy=| 1 dy (3
R fe(y)
l ! I
where, f . (y ) is the nominal density of Y at the vector point y, given by the
! I
g convolution of the information density fos and nominal noise density f  and the inner
T ! l
product P y is the optimal linear estimator of X, from y under nominal conditions (i.e.
. 1 ! .
° for e=0). The density fY(y ) belongs to the class FY (€), obtained from Fm(s) as follows
! l l N N [ 1
Fo@=1{fy(y):fyly)=0-ef (y)* ((y)+eh (y))
G Problem (11) can now be reduced to
mlf I(fy) 14)
° fyeF (e)
.. k . . .
Although the class of densities F{ (€) is not tight (therefore not compact) in the
weak topology of all probability measures on the Borel o-field of the metric space
! . . .l . .
® (R,y), the infimum in (14) is attained in F v (€). Furthermore, there is a unique member
!
of F| (€) attaining that infimum, under the nominal assumptions discussed before. The
) above assertions together with the explicit form of the infimum and the corresponding
(]
estimator, constitute the statements of Theorem 1 below, whose proof is in the Appendix.
Let &(x) and ®D(x) be the zero mean unit variance Gaussian density and cumulative
@ distribution, respectively. Let H(A,z) , A>0 be the Huber function defined as
|
|
| H(A,z) = max(-A,min(\,z)) (15)
}
@ . . . . T .
| Finally, let r be the nominal variance of the linear form P Y, ie.
!
|
|
g 9
‘®

™ L
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T 12 T2 loo
r=E{(PY)}= J'(P ¥ ) S,y (y)dy . Then, we express Theorem I as follows.

@ :
R

Theorem 1

o (1) There is a unique saddlepoint solution (f*, )20) of the game (9).

-

- -~
(i1) The saddlepoint observation density fY and estimator Xo are given by the equations

@
‘ . (I*E)foy(yl), for IPTle <A
fyly)=
Y Ip'T’yl | l . (16)
(1-e) = f . (y ), for IP'y I>A
(o N
: X (v)=HAP'Y) .
o
where,
. A=cVr
° ) .
c:P)y+c Oc)y=—"" 18)
2(1-¢)

*
We note that the estimator XO in (17) above, is a truncated version of the linear,
. . . T ! . . .
nominally optimal mean square estimator Py . The truncation constant A is proportional
to the square root of the quantity r which is the vaniance gain in estimating X from y
under nominal conditions (€=0). The proportionality factor ¢ tends to infinity for €—0.

In the latter case, the estimator (17) becomes identical to the nominally optimal mean

square estimator.

10
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; *
| There are interesting similarities and differences between the estimator XO in (17)
".
‘ and the classical robust parameter estimator of Huber (1964). Both estimators introduce
|
the same form of nonlinearity to limit the influence of bad observations. However, while
Huber’s estimator applies the nonlinearity on each one of the observation data, the
®
estimator derived here applies a similar nonlinearity on a linear combination of the
observation data. Furthermore, the form of the least favorable density derived in (16) has
. . . . T I o
® heavier tails than the Gaussian by the linear factor |P y |, while, in the robust parameter
estimation problem, the corresponding least favorable density has much heavier
exponential tails. Regarding these comparisons, it should be pointed out that Huber’s
A result is based on the maximum likelihood esitmation of the unknown mean of a
contaminated distribution, while the result of Theorem 1 is based on a Bayesian
estimation of a random process corrupted by contaminated noise and with the mean
L
square as performance criterion.
Regarding qualitative robustness, we note that for any g, 0<e<1, the estimator Xo* is
® both continuous and bounded satisfying thus the conditions for outlier resistance stated in
the previous section for finite length estimators.
P *
The mean square error induced by X, at the least favorable density f ,, is equal to
. 2 * .. . p m o
o, -I(f Y). This is the largest possible error within the class F (€) and by substitution
we obtain
. *
LN 2 2
e(f yX,) =0 (1-(1-8)2d(e)-1)q |
|
? -1 . *
‘ where, q = S ‘/; Lete(f 0,XO) be the mean square error induced by the robust estimator
|
® 5" . . . o . .
X, at the nominal Gaussian density. Also, let e be the nominally optimal mean square
11
®
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'.; error. Then, after some computations we obtain
e

i o 2. 2

4
- ¢ =6,(I~q) ‘
:"' ~* o 2 !
b e(f X)) =€ =2r(P(=c)(1+c )—cd(c)) i
i

' b |
i The second term of t.e right hand side of the above equation is always positive and
iy
5 A K
b represents the performance loss that is incurred if the robust nonlinear estimator X is
+
® applied, instead of the linear nominally optimal one.

%

- 4. Construction of Filtering and Smoothing Operations - Step 2
L We now consider the case when the number of observation data is larger than the
Ca

o’ parameter m. For this case and for arbitrary nominal information and noise processes,
o
< results concerning the design and study of appropriate nonlinear filtering and smoothing
X e operations can be found in Tsaknakis (1986). For the purpose of this paper we will focus
> on autoregressive Gaussian information processes and white Gaussian nominal noise
.,

‘ processes.

re' ‘

j-l- Let the nominal information and observation processes {Xn}, {Yn} be given by the
§ equations
b+
D

¢ (

i = .

o) Xn alxn—-l + alxn—Z + + a'an—k + vn 19)
N Y =X +W
o n n n

" . . : :
b where, {Vn}, {W_} are mutually independent, i.i.d. and zero mean Gaussian, with
w
e ) 2 2 . .

e variances 6_and G, respectively. Upon defining
‘€
b
{ [ T
‘: gn [Xn’ Xn—l’ n—k+1]

k)
)

k)
K 12
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4 4
1 0 0
A= (20)
1 0
0 .1
T
B =(1 0 --- 0]
the nominal model can be described in the following vector form
U =AU . +BV
~n —n-1 n
T
Y =BU+W_ 2n

Writing the system (19) in the vector form (21) has the advantage of the recursive Kalman
filtering relationships for the nominal model. We want to estimate X, given observations
Yo Yorr 7 Yo for any value of /[, when the observation process is corrupted by
outliers occurring in batches of size m. When /<m, we apply the minimax estimator
derived in the previous section. When />m, we consider estimating the entire vector u,

given the above measurements, and we define the following recursive estimator

0
A oam. T m+1
Gp,=A 8 +g ! X b0 BA & ) (22)
i==m+1
In (22), 0 a, 1’:— , denote the estimates of the vectors u upu_ given observation
data (yo, Yop oo y_m), (y_m Yoo y_m_m), respectively. Also,

{l_)i [ i=0,...,~{+1} are the vector-valued coefficients of the linear m-step recursion of the
Kalman filter operation on the system (21). Finally, the vector-valued function g, 18

defined as follows.
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8,00 = HO ) HOL, xa)eo- HO L x))] (23)
T
x =[xl
where
172
A =c[r ]
-j,m ~jm
. 2-¢
c:Pe)+¢c Oc)=""" (24)
2(1-¢)

Tim' variance gain in estimating X, given {y, -m+1<i<0}

nder nominal conditions.

H( -, - ) : the Huber function as defined in (15).

From (22), and in view of the defintions (23) and (24), it is evident that every scalar
nonlinearity is applied to linear combinations of at most m observation data.
Furthermore, if €—0, the positive constants {k_j_m, j=0,....,~k+1} tend to infinity and the
estimator in (22) becomes identical to the optimal at the nominal Gaussian model
estimator. For £>0, the above constants are all finite and they determine the amount of

limiting which is introduced in each entry of the innovations term of the Kalman filter.

A filter similar to (22) was earlier considered by Masreliez and Martin (1977), for
the case m=1. The above authors applied the nonlinearity on a transformed version of
the innovations process. However, their analysis was based on an ad hoc assumption that
the process formed by the residuals is Gaussian. Then, using this assumption, they
derived a covariance recursion, avoiding thus the problem of nested nonlinearities in the

actual nonlinear recursion. Later on, we will numerically demonstrate the performance

14
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of the above filter as compared with that in (22), as analyzed by the methods we present

in the sequel.

Here, we are primarily interested in the study of the asymptotic properties of the
estimator in (22) when the number of observations tends to infinity, and the nominal
information process is stationary. The condition for stationarity of the latter process is

that all the roots of the polynomial equation

k k-1
A-ad -.-a =0
have magnitudes less than one.

The first issue is the asymptotic outlier resistance of the estimator. Theorem 2

below, whose proof is in the Appendix, establishes that property.

Theorem 2

Let {Xn] in (19) have finite variance and be stationary. Then, the filter in (22) is

asymptotically (/ —ee) outlier resistant for mutually independent m-size batches of

outliers.

The next issue is the asymptotic stationarity of the filter itself when / —eo. In order

to study that we consider the residual process

~ m m N
- = _ _ -
Uy-0,, =UA™U, + AW, -0, ) 25)
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0
T m+i

T m+i ~
g, Z bil[(Yi—BA U ntBA U —!-m,l)]

- -m

i=—m+1

For [ going to infinity along multiples of m, the above residual process becomes
asymptotically stationary. This will be shown by establishing a more general result
regarding the asymptotic stationarity of Markov processes with Euclidean state space.

The latter result is expressed in Theorem 3 below, whose proof is in the Appendix. In the

A T
sequel we denote 1 1x1 1 max Ixil for x = (xl,..xn) .
1

Theorem 3

kI k
Let f(x,v) : R x R = R be measureable. Let {)_(“, n>0} be a stochastic process in
Rk defined by

X, =fX,V),n0 26)

-
-

!
where [Xn, n>0} is an 1.i.d. process in R, independent of Xo with distribution P(-).

Then, if there is a positive {, such that {<1 and

[ 11(x0) = f W) 1 1APWST Tx-x1 - ¥x x'eR"

27)
Rl

the process {X_} is asymptotically stationary.

The residual process (25) satisfies the conditions of Theorem 3. This can be shown

by using the properties of the nonlinearity g.,0),  namely  that
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IIgm(x)—gm(;’)l <1 Ix=x"I'l, and certain standard properties of the linear filtering
coefficients “_’11} and the stationary matrix A. As a result, the marginal probability
density of the residuals converges weakly to a steady state density. The covariance of
that steady state density 1s what we call the asymptotic mean square error induced by the
filter (22) at the nominal Gaussian model. In fact, it is even true, as a resuit of Theorem
3. that the sequence of covariances of the residual process converges to the steady state
covariance,

The computation of the steady state covariance is an important component in the
study of the asymptotic properties of the proposed filter. It is interesting to point out that
the deviation of the robust filter from the nominally optimal linear filter builds up as the
number / of observations increases, and we would like to see what is the performance for
asymptotically large number of observations, as compared to the nominally optimal
asymptotic performance. The difference in performance will clearly exhibit the price

that one has to pay for achieving robustness in this context.

Due to the nature of the nonlinear residual recursion, the computation of the
asymptotic covariance is a difficult and tedious task. As analytic, or closed form,
expressions seem impossible to obtain, we approached the problem by deriving upper
and lower bounds. The derivation was based on the asymptotic stationarity of the

~ 2 ~ 2
residual process, which implies limE{(U,~U )} =1lmE{(U_ -U )}, and the

[ 00 | ~300

approximation of the square of the second term in (25) by upper and lower quadratic

bounds in terms of Q_m—g_m ;- The bounds were finally obtained by solving two fixed

’

T
point matrix equations of the form X = AmX(Am) + G(X). The two bounds are found to

be tight enough and approaching each other as the design parameter m becomes larger, at

17
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- the exponential rate Ipmu(A)l , where umu(A) is the largest magnitude eigenvalue of
L . . . .

, the matrix A. As a result, a reasonably good estimate of the asymptotic covariance was
3 obtained. We defer the discussion of this issue until section 6 where the above results are
A © numerically demonstrated and analyzed.

\
: 5. Breakdown Point. Influence Function.
L Let us consider the frequently observed in practice case of independent and additive
L
- outliers. In particular, let the noise sequence {...,W_I,WO,WI, -+ - } be such that each of

D
o its elements is generated by the nominal Gaussian noise process, with probability 1-8,
s and it is instead equal to some deterministic value, v, with probability §, 0<86<1. Let the

k.

: value v occur with probability 8, independently per noise datum. Given the above outlier
. model, given some asymptotic filtering or smoothing operation, XO, let e(fo,S,v,XO)

(LY . L .

e denote the induced mean squared error. That is, if fo represents the overall nominal

@

9 . - ~ 2

2 Gaussian model, then, e(f0,8,v,X0) =E{(X;~X,) lfo,,S,v}. Let wus denote,

K.

- . A ~ .

o e(fo,S,XO) lim e(fo,S,v,XO), and let there exist some value &*, 0<8*<1, such that,
’ = v—ytoo

¥
o
: £ 58X )>E(X_If }; ¥8> 5%

o e(f,0. X)) >E{X,If }:¥0>
K

. 2

w < . x*
/ e(fo,S,XO) SE(X,If}): ¥5<d
W

L) . . . . Iy
] Then, the value 8* is called the breakdown point of the asymptotic operation X,y The

-
y breakdown point clearly represents the maximum frequency of independent,
>,

;3 asymptotically large in amplitude outliers that the operation )20 can tolerate, before it

G becomes worthless; that is, before it starts inducing mean squared error, that is larger
<
- than that induced when no observation data are available. We note that the breakdown
j 18
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points of the nominally optimal linear filtering and smoothing operations, are easily

found to equal zero.

Let us now consider a generalization of the outlier model presented above. In
particular, let us consider the case where independent, size m blocks of outliers may

occur. Then, each block occurs with probability §, and it consists of a value v per datum

~

in the block. Given some filtering or smoothing operation X, we then denote the

o

induced mean squared error, em(fO,S,v,Xo). Denoting by e(fo,Xo) the mean squared error

A . N
in the absence of the above outlier model, we denote, J E.(v) e (f,0,v.X)—e(f X))
m, - mo 0 o0

We call Jml(v) the variation function at §. Given 8, the variation function exhibits the

difference between the mear squared error, when the outlier value is v and the frequency

of the outlier blocks is 8, and the mean squared error in the absence of outliers. We call

A 4
Imﬁ(v) o Jms(v), the nommalized variation function at &, and we call

A
Im(v) limIm 5(v) the influence function. The influence function is the slope of the
=5—>0 ‘

variation function at 8=0, and it exhibits the effect of the outlier value v, at

asymptotically small outlier frequencies 9.

Regarding the computation of the breakdown point and the influence function L)
of the filtering operation in (22), an approach similar to that used for the asymptotic
variance was adopted. In particular, upper and lower bounds, were computed for both

. . 2m
quantities. These bounds approach each other at the same exponential rate (AT
. . o . . . ~
The influence function, Im(v), of the nominally optimal linear filter, was also
computed for comparison. The latter has a closed form expression which is a quadratic

function of the outlier value v.
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where,
0
T i .
C= ¥ bB'A, (b =!imb,)
) [ 500
i=—m+1
0
b= I b,
=—m+1
0 T
N= X bp,
i=—m+1}

6. Numerical Results

In this section we present some numerical results regarding the asymptotic
performance of the filtering operation in (22), for two special cases of the nominal model

(20).

Model 1 First order autoregressive with autoregressive parameter o= (.5, and

o]

2 2
Model 2 Third order autoregressive with a, = 0.6, a, =0.07, a, =-0.06 and o =0, =1

Tables 1, 2, and 3, and Figures 1 and 2 exhibit the performance of the filtering
operation in (22), for various values of the design parameters € and m, when the nominal
model is model 1. When the nominal model is instead model 2, the corresponding

performance is exhibited in Tables 4, 5, and 6 and figure 3. Tables 2 and 5 correspond to
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independent per datum outliers, while tables 3 and 6 correspond to independent m-size

batches of outliers.

Both the upper and the lower bounds of the asymptotic at the nominal mean squared
error (Tables 1 and 4) are monotonically increasing when the contamination parameter €
increases, for any tixed m. Moreoever, for fixed €, particularly for small values of g, the
upper bounds of the asymptotic error decrease sharply when m increases, while the
corresponding lower bounds experience relatively smaller variations with m. Regarding
the breakdown point (Tables 2, 3, 5, and 6), we first observe that both upper and lower
hounds increase when € increases, for any fixed m. For the case of independent per
datum outliers, the upper and lower bounds of the breakdown point decrease when m
increases. On the contrary, when independent m-size batches of outliers are acting, the
lower bounds of the corresponding breakdown point increase with m, while the upper
bounds remain practically constant. Finally, the upper and lower bounds of the influence
function of the filtering operation in (22) are always monotonically increasing and
bounded, as can be seen from Figures 1, 2, and 3. They both reach certain saturation
points depending on € and m, and, for fixed m, these saturation points are decreasing
when € increases. In all the above cases and for all values of €, the upper and lower
bounds tend to become equal for large m, permitting thus a more accurate evaluation of

the performance measures of the filtering operation in (22)

The filtering operation in (22) can combine close to optimal at the nominal model
performance, together with good protection against outliers. In addition, this operation is
more appropriate for protection against independent batches of outliers. Similar results

are drawn when the order of the nominal autoregressive model in (20) is some arbitrary
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(K
Using the concepts and methods that we developed in previous sections, we
analyzed the asymptotic performance of the filter proposed by Masreliez and Martin
> P when it operates on a stationary environment. In Tables 7 and 8, the asymptotic mean

4
S square error bounds and the breakdown point bounds of the latter filter are shown

\

)]

X (column B) versus the corresponding bounds for the filter in (22) presented here. In
. hd Figures 4 and 5 the same comparison is made for the influence functions of the two

- filters. Both filters were assumed to operate on the same process which was taken here to
. be model 1, and for m=1. It is observed that the mean square error bounds of the filter

:‘(

— (22) are uniformly better than those of the Masreliez and Martin filter (Table 7), at the
- expense of lower breakdown points (Table 8) and higher saturation points of the
‘ ® influence functions. However, for m=2, it can be clearly seen from Tables 9 and 10, that

. the breakdown points of the filter (22) improve considerably while the mean square error
.:j remains small, especially for low contamination levels.

o

: 7. Conclusions
",

. We designed and analyzed nonhnear filtering and smoothing operations that were
. found to provide effective resistance to outliers and simultaneously good performance at
s,

- the nominal Gaussian model. The proposed estimators can be easily implemented, being
. onlv slightly more complex (in implementation) than the usual linear estimators.

. . . - . .

¢ However, the analysis and evaluation of their asymptotic performance were considerably
re more involved than that for linear estimators, both from a theoretical and a computational

g point of view.
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Due to the nonlinear recursion which is involved in (22), an exact covariance
recursion is not possible. So, it was necessary to study the entire functional recursion of
probability distributions. Then, we proved asymptotic stationarity of the residual process

by establishing a more general result concerning the asymptotic stationarity of Markov

processes with Euclidean state space.

For the proposed estimators, strong robustness and good performance at the nominal
are conflicting requirements. The more robust an estimator is, the worse performance it
has, and vice versa. The tradeoff between robustness and performance has to be adjusted
for each particular problem by appropriately varying the design parameters € and m,

according to the specific requirements and the available knowledge about the underlying

situation.
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APPENDIX

Proof of Theorem |

We tirst prove that if the optimization problem

inf I(fY)
£ eFy (8)

has a solution, it is unique. Indeed, let f Ifz be two [-dimensional densities in F', (€)

attaining the infimum. Then, since I(*) is convex, any densityf8 of the form

f 5= (1=8)f, + 8f,, 0<8<1

must attain the same infimum. Thus, I(fy) is constant for 0<6<1. Itis implied that

dI6)  ((1-0f, P Y ) )

0=—— =2 — ay (A1)
& (fy )

where, the differentiation under the integral sign is justified by the dominated
convergence theorem (observe that fsz(l—e)f0Y>0). From (A.1) we conclude that f1=f2

1 T i !
a.e. (dy ), since P#0 and the set where P y =0 1is a proper subspace of R .

We now prove

. !
I(fY) < I(f\.). VfYEFY(E) (A.2)
{ T ! ¢ . ! .
et E,={y :IPylI<A} and E, its complement in R. Since

T !

. Py |

fY(y )= (l—e)foy(y ymax {1, 7}, we have the following relationships.
A

24
e e L S e Ll e A bt e g

e A AT N A M A AT A A A N O SN TN PP N,

.........



I(fy) - ) =
@
T I 1.2 l !
[(1-ePy £y (I ()~ (-0, )
E, £y ) ()
@
T I 1.2 1 *
[(1-ePy £y 6T () =y )
+ I dy <
£ (v E(y)
- N Y Y
*
£ (y)
2 1 * l
| (£, (y) —f (y Ny =
< g O
* 1.2
OO
=A 1= ————dy| <0
L J * L
gD
The inequality in (A.2) follows from the above relationships.
€
The expressions in (18), determining the value of the constant A, evolve from the
* 1o
requirement that ij(y )dy =1.
Rl
® .
Finally, the form of the robust estimator X (y ) is equal to the conditional
l . {
expectation E(Xoly ) at the least favorable density f*(xo,y ).
o
f*(xo,y[)
]
Xoly )= Jxo . dx, (A.3)
R )
®
where,
25
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PH(xgy ) = (1-O) (xpy ) + €E,_(xJh*(y) (A4)

Substituting (A.4) into (A.3) and recalling that J'xofos(xo)dx():O and
Rl
i 1. T .
jfo(xo,y )dxo = on(y )P y we obtain

1

R

(1-eP'y £ (v

~

X (y)=

£,

1 T !
{ PTy,forIP y)l <A
T I T !
Asgn(P 'y ), for IPy | >A

~HO, P'y),

Proof of Theorem 2

The operation in (22) has the general form, X = ya.X, + gy YoX, {)‘(J.}), where,
i i

for some bounded, A,

X JIxI<A
g(x) = , and where |¥a I <c, for some given c>0. Therefore,
Asgnx:Ix1>A !

i

IX | <A[1+13a. 1] S Ac+1); V. AS)

i
" 2 ~
Let E“ {[Xn—Xn] } denote the mean squared error induced by the estimate Xn, when

. . . . . 5 12
the Gaussian nominal observation process is acting. Let Em{[Xn-Xn] } be the same

26




.y error, when some process in class F™is acting instead. Let yn and z' denote sequences
j@

[ that are respectively generated by the processes U and . Given some set A" in Rn, and
K. in connection with (A.5) and the Schwartz inequality, we have,
E

' X X 1112°A") =B, (X 12"€A") - 2B (X X I7¢A"

F Eu{[ - n] ZEA } = uo{nZEA}—Eu{XnnZEA}+

o~ A 2

. +E (1X] 1Z€A"} < (A.6)
o

) 1 2 12, o 2 A 2

<ci2E (X 17eA")E (X ) 126"} + B, ((X ] 12eA)

N 12 2 2 1 24

" ¢ <c+2hc (c+D+A (c+1) =[c /2+X(c+1)] C

: Due to (A.6), and considering ergodic and stationary observation processes in
: ° conjunction with F m, we obtain: given 1>0, there exists n, such that,
{

- _ . 2 o 2 . im _im 2 _n

- Vn>n°,Eu{[Xn—Xn] }S(l—e+n)E{[Xn—Xn] l[#l'Ym(Zi+l + Yin )>€el<ney eR }+eC

-

o (A7)
!
L where, for independent m-size outliers, there exists some £0>O, such that,

v,
128
‘" A 2 . i+m  i+m n_n

< E{[Xn—Xn] \#y (2, 5 Y,,, )>EISnEy ER )< (A.8)
N

N - 2
: SEHO{[XH—Xn] } +€C; J'\fe<£-:0, ¥n>n_

[ 3
N From (A.7) and (A.8) we conclude: Givenn = —, there exist n, and £>0, such that,
N 2

~




AT TR W
<

X o 2 . 2 £ € . 2

. e IE“{[XH—Xn] ]—Euo{[Xn—Xn] JI1<e(-7)C + Euo{[Xn—an ) <

' 2 2

) 5

) <e—C §;, ¥n>n Me<e
oK — o] o]

; 2 =

v
‘- 2 8

> Thus, given 8>0, there exist, n_, and €:0<e<min(e , — ), such that

oy 5C
.

d n implies 1E {[X -X '}-E_([X X 1'}1<3 ; ¥

. np (Mot <& implies 1E {{X =X 1 }-E ([X -X 1}1<6; ¥n>n,
‘: The proof of theorem is now complete.
‘ -

3 Proof of Theorem 3
From (26) we conclude that (X } is a Markov process. Thus, to prove asymptotic
i ) stationarity, it suffices to show that, given any distribution for XO the distribution of X_n
- k

- converges weakly to a unique distribution in R, as n—oo,

s

= . . . k

.- Let p(x) be an arbitrary density function, VxeR. Let then the sequence
£

! (un(y, n>0} be defined as follows.

>, *

"y (0 = [Ax,0) 1 (@do

.f un+1 ") J. (—‘_ un — = (Ag)

Rk

. ; where A(x,w) denotes the conditional density function of x, given o, when x = f(w,v),

: =

Ll N . . . l

T and where wis independent of v, and p(v) is the density function of v at veR . Let us
. now define the sequence {A(n)(g,g), nx1}, as follows.

Ny Rh

qc A (x,m) = A(x,0) (A.10)
A

)

4]

a 28
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A" o) = AV A oz

Then, we can write,

1,00 = [A" s op@do

k

R

(A.11)

To show weak convergence of the sequence {un(y}, we need to show that there

. . . k . .
exists a density function p(x) ; x€R, such that, for any continuous and bounded function,

k
g(x)in R, we have,

[800m, (0dx —— [g(Ondx

e (A.12)
R" R
Let us define the sequence {g (x), n20}, as follows.
2,0 = g(x) (A.13)
g = [Azyg  (2dz
Rk
Then,
(0K (x)dx = | g (O (0)dx
Jeton, (0dx = [g (om, AL
R" R
Let us define,
A -1
u,  sup (6 sup g (2)—g (1) (A.15)
850 oz 1<8




@
Without lack in generality, we will assume that the quantities {u_} are all finite.
]
(This 1s true if, for example, the functions g (x) satisfy a Lipshitz condition.) From (26)
and (A.13) we obtain,
L
g (x)= g (f(x,v)p(v)dv
Tn J’ I (A.16)
Rk
°® From (A.15) and (A.16) we conclude.
-1
u < j{sup(ﬁ sup g (fx.v)-g _ (f(w.v))}p(v)dy
r 00 Pix—wi1<d
R —
1~
-1
< [h@pW{ sup (18h(v)] sup g, (0-g_ (@)D}dy
« 3>0 I 1x~wl [<8h(v)
R p—
le
=y h(v)p(v)dv =Lu_ (<]
n—-l.‘- —)p(') - E" n-1 C (A17)
Rk
k
. From (A.17), we conclude that u — 0, as n—oeo, and that g, (x)—g(x) = constant on R,
as n—oo. Thus,
. T(xOU (x)dx) = | g (XU, (x)dx————>constant
. [gom (0do = [g (Op(x)dx AIS)
k k n—oco
R R
Due to (27), the sequence {p (x)} is tight. Thus, there exists a subsequence
k
. {pn(g}, and a density function p(x) in R, such that, for every continuous and bounded
function g(x), we have,
@
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(A19)
' Rk n oo

From (A.18) and (A.19) immediately follows that,

Jem, (0dx—- [gn(dx

k n—yeo
R

R

and the proof of the theorem is now complete.
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T R IRCHTET R TRTRTLT TR
. St i i s el S I el

m
. 1 2 3 4 5 6
0.002 0.53167 0.53284 0.53333 0.53346 0.53350| 0.53351
) 0.66941 | 0.56629 0.54159 | 0.53552 0.53401 0.53364
0.01 0.53488 | 0.53963 0.54136 | 0.54183 0.54195 0.54198
: 0.67108 | 0.57247 0.54945 0.54385 0.54246 0.54211
0.1 0.58157 0.608293 0.61640 0.01851 0.61904 0.61917
) 0.70620 | 0.63797 0.62328 | 0.62032 0.61949 0.61929
0.15 0.60983 | 0.64401 0.65401 0.65659 0.65723 1 0.65740
’ 0.72961 0.67249 0.66099 | 0.65832 0.65767 0.65750
0.25 0.66941 0.71376 0.72608 | 0.72921 0.72999 1 0.73019
: 0.78026 | 0.73998 0.73249 | 0.73080 0.73039 | 0.73028
0.3 0.70079 0.74848 0.76146 | 0.76474 0.76556 | 0.76576
: 0.80718 { 0.77357 0.76758 0.76626 0.76594 0.76586
0.4 0.76727 0.81887 0.83243 | 0.83582 0.83667 | 0.83688
: 0.86426 | 0.84156 0.83795 | 0.83719 0.83701 | 0.83697
Table 1
Bounds on the asymptotic mean squared error, at the
nominal model.
Model 1. Causal filtering operation in (22
Asymptotic mean squared error induced by the optimal at the
nominal model causal filter = 0,53112
Upper lines: lower bounds.
m
A 1 2 3 4 5 6
0.002 0.09928 | 0.06814 0.04932 0.03788 | 0.03056 0.02556
0.14352 | 0.07476 | 0.05048 0.03811 0.03060 | 0.02557
0.01 0.14699 | 0.10040 | 0.07274 0.05597 | 0.04522 0.03786
0.20676 | 0.10942 0.07433 | 0.05628 | 0.04528 0.03788
0.1 0.32204 0.21602 0.15715 0.12180 | 0.09898 0.08326
. 0.40878 | 0.22978 | 0.15974 0.12228 0.09908 | 0.08328
0.15 0.38225 0.25595 0.18674 0.14516 | 0.11824 0.09962
i 0.47011 0.27034 0.18937 | 0.14568 | 0.11835 0.09964
0.25 0.48129 | 0.32349 0.23761 0.18576 | 0.15194 0.12840
: 0.56488 0.33815 0.24036 0.18631 0.15205 0.12842
0.3 0.52466 | 0.35423 0.26119 0.20477 0.16783 | 0.14203
. 0.60450 | 0.36875 | 0.26395 0.20533 | 0.16795 0.14206
0.4 0.60417 | 0.41329 0.30739 0.24246 | 0.19955 0.16937
) 0.67478 0.42723 | 0.31012 0.24301 0.19967 0.16940

Table 2

Bounds on the breakdown point. :

Model 1. Causal filtering operation in (22). Independent
per datum outliers.

Upper lines: lower bounds.
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- i
- ® 1 2 3 4 5 5 6
0.002 0.09928 0.13164 0.14080 | 0.14315 } 0.14315| 0.14389
] 0.14352 | 0.14394 0.14394 0.14394 ' 0.14394 0.14394
0.01 0.14699 | 0.19073 0.20274 | 0.20580 { 0.20656| 0.20676
v ! 0.20676 | 0.20686 | 0.20682 | 0.20682 | 0.20682{ 0.20682
0.1 0.32204 0.38537 0.40125 0.40520 | 0.40618) 0.40643
- 0.40878 | 0.40676 | 0.40653 0.40651 0.40651 0.40651
0.15 0.38225 0.44639 0.46212 | 0.46601 0.46698 | 0.46723
i 0.47011 0.46759 | 0.46733 0.46731 0.46731 0.46731
7—8725 0.48129 0.54234 0.55688 { 0.56045 0.56134 0.56156
| 0.56488 0.56195 0.56166 | 0.56164 0.56164 0.56164
0.3 0.52466 § 0.58298 | 0.56672 | 0.60010 | 0.60093 | 0.60114
) 0.60450 | 0.60152 | 0.60124 0.60121 0.60121 0.60121
0.4 0.60417 | 0.65577 0.66775 0.67067 | 0.67140 | 0.67158
’ 0.67478 | 0.67193 | 0.67166 | 0.67164 0.67164 0.67164
Table 3
Bounds on the breakdown point.
Model 1. Causal filtering operation in (22 Independent
size-m batches of outliers.
Upper lines: lower bounds.
m
€ 1 2 3 4 5 6
0.002 0.55402 | 0.57594 0.59937 | 0.61040 | 0.61445 | 0.61566
: 0.83214 { 0.68407 | 0.63361 | 0.62154 | 0.61764 | 0.61658
0.01 0.57548 | 0.62504 | 0.66518 | 0.68180 | 0.68763 | 0.68936
i 0.86214 0.73994 | 0.70200 | 0.69383 | 0.69109 | 0.69035
0.1 0.62110 | 0.69155 | 0.72865 | 0.74097 | 0.74499 [ 0.74615
i 0.89436 | 0.79589 | 0.76040 | 0.75110 | 0.74788 | 0.74698
0.15 0.65204 0.72942 | 0.74120 § 0.77011 0.77401 | 0.77432
i 0.94013 | 0.83110 | 0.79568 { 0.78320 | 0.77516 | 0.77501
0.25 0.69875 | 0.73479 | 0.76678 | 0.78133 | 0.79002 | 0.75012
) 0.95182 | 0.86264 0.80203 { 0.79312 | 0.79202 { 0.79136
0.3 0.73478 | 0.73930 { 0.78033 | 0.79300 | 0.80400 | 0.80511
i 0.96067 | 0.91012 | 0.86481 | 0.82414 0.80923 | 0.80547
0.4 0.73510 | 0.74902 | 0.79087 | 0.81142 | 0.82267 0.82320
: 0.97033 | 0.91437 | 0.86690 | 0.83571 | 0.82610 | 0.82359
Table 4

Bounds on the asymptotic mean squared error at the nominal

model.

Model 2. Causal filtering operation in (22).

Asymptotic mean

squared error induced by the optimal at the nominal model
causal fi/lter = 0.54731.

Upper lines:

PR
B

lower bounds.
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hl
¢ 1 2 3 4 5 6
0.002 0.07594 0.05802 0.04513 0.035395| 0.028765 0.02411
’ 0.13890 0.07501 0.04960 0.0359801 0.029010 | 0.02486
0.01 0.11029 0.08225 0.06334 0.04958 0.04030 0.03380
0.20020 0.11510 | 0.08010 0.05156 0.0450 0.03388
0.1 0.25689 0.18640 | 0.14353 0.11313 0.09248 0.07790
) 0.39537 0.22540 | 0.15003 0.11804 0.09424 0.07823
0.15 0.32899 0.23552 0.18083 0.14286 0.11705 0.09878
i 0.47563 0.27100 | 0.20242 0.14811 0.11829 0.09890
0.25 0.47094 0.33123 0.25350 0.20121 0.16563 0.12747
0.60225 0.39693 0.26089 0.20541 0.16735 0.12784
0.3 0.53838 0:37811 0.28952 0.23047 0.19020 0.16150
0.65802 0.42004 0.29457 0.23215 0.19082 0.16195
0.4 0.66166 0.47002 | 0.36191 0.29019 0.24090 0.20548
0.75106 0.52401 0.39102 0.30016 0.24210 0.20602
Table 5
Bounds on the breakdown point.
Model 2. Causal filtering operation in (22). Independent
per datum outliers.
Upper lines: lower bounds.
o . 1 2 3 4 5 6
0.002 0.07594 0.11269 0.12939 0.13424 0.13578 0.13622
i 0.13890 | 0.13995 0.14500.| 0.13952 0.13595 0.13682
0.01 0.11029 | 0.15774 0.17826 0.18406 | 0.18592 0.18643
: 0.20020 | 0.195090 0.19851 0.18820 | 0.18683 0.18682
0.1 0.25685 | 0.33813 | 0.37173 0.38136 | 0.38444 0.38530
: 0.39537 | 0.39220 0.39104 0.38804 0.38740 | 0.38607
0.15 0.32899 | 0.41556 0.45031 0.46022 0.46336 0.46424
i 0.67563 | 0.47215 0.46903 | 0.46630 | 0.466502 0.46482
0.25 0.47094 | 0.55275 0.58401 0.59287 0.59561 0.59820
i 0.60225 | 0.60112 0.60039 0.60004 0.59970 | 0.59918
0.3 0.53838 | 0.61325 0.64137 0.64932 0.65175 0.65244
) 0.65802 | 0.65720 | 0.65695 0.65530 | 0.65398 0.65307
0.4 0.66166 | 0.71912 0.74020 0.74616 | 0.74795 0.74845
: 0.75106 | 0.75083 0.75010 0.74970 | 0.74912 0.74887
Table 6
Bounds on the breakdown point.
Model 2. Causal filtering operation in (-.). Independent
size-m batches of outliers.
Upper lines: 1lowver bounds.
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| 0.53167 0.53283
0.002 0.66941 0.66992
0.01 0.53488 0.53934
. 0.67108 0.67378
L, ] 0.58157 0.60346
0.1 0.70620 0.72394
0.60983 0.63695
0-15 0.72961 0.75215
@ 0.66941 0.70312
0.25 |
0.78026 0.80876
0.3 0.70079 0.73546
. 0.80718 0.83740
¢ 0.76727 0.80487
!
0.4 0.86426 0'896O3J
Table 7
" Comparison of asymptotic mean square error bounds
between filtering operation in (22) and the filter
by Masreliez and Martin. 1!Model 1. Optimal at the
nominal: 0.53112 »
- A: Causal filtering operation in (22). m=1
! B: Filter by Masreliez and Martin
v Upper lines: lower bounds.
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L 0.09928 | 0.12240

2

" 0.002 0.14352 0.17464
’ Tf 0.14699 0.17853
. 0.01 0.20676 | 0.24633
R 0.32204 | 0.36890
o 0.1 0.40878 0.45648
- 0.38225 | 0.42999
0.15 0.47011 0.51629
¢ 025 0.48129 | 0.52707
N 0.56488 0.60631
- 0.3 0.52466 0.56851
o b 0.60450 | 0.64324
L(. -

C 0.4 0.60417 0.64312
- 1. 0.67478 0.70798
{

Table 8

> @ Comparison of breakdown peoint bounds. Model 1.
] A: Causal filtering operation in (22). m=1.
» B: Filter by Masreliez and Martin.
y-. Upper lines: lower bounds.
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. £ A B
o
0002 | 0-53284 | 0.53283
: 0.56629 | 0.66992
: 0.01 0.53963 | 0.53934
5 0.57247 | 0.67378
& o 0.60829 | 0.60346
: 0.63797 0.72394
: 015 0.64401 | 0.63635
; 0.67249 | 0.75215
@
0.25 0.71376 | 0.70312
0.73998 | 0.80876
5.3 0.74848 | 0.73646
0.77357 | 0.83740
- 0.4 0.81887 | 0.80487
: 0.84156 | 0.89603
- Table 9
o
o

Comparison of Asymptotic mean square error

- bounds between filtering operation in (22

and the filter by Masreliez and Martin.

Model 1. OGCptimal at the nominal error: 0.53112.
N A: Filtering operation in (22). m=2.

" B: Filter by Masreliez and Martin.

Upper lines: lower bounds.




€ A B
0.002 0.13164 0.12240
0.14394 0.17464
0.01 0.19073 0.17853
0.20686 0.24633
0.1 0.38537 0.36890
0.40676 0.45648
0.15 0.44683 0.42999
0.46759 0.51629
0.25 0.54234 0.52707
0.56195 0.60631
0.3 0.58298 0.56851
0.690152 0.64324
0.4 0.65577 0.64312
0.67193 0.70798
Table 10

Comparison of breakdown point bounds.
Model 1. Size-m batches of outliers.
A: Causal filtering operation in (22).
B: Filter by Masreliez and Martin.
Upper lines: lower bounds.
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Bounds on the Influence Function
& Model 1. Causal filtering operation in (22).
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the nominal model filter.
e




R NN B Rl e vl i As Sa Sd Gl S di ave ged st a4 !.F.Htrv-vv ol diat el Ak Ml g A A AU fte Sl i Wimal * ol el Sl Ael dadh Bl Gnl A B AR Ak ok

IR L3
q‘

L -
:0 12
@ 10 |
¢ 8

aa

A N R PN A
9

\ |

6 8 10 —V

Figure 3

Bounds on the Influence Function
Q. Model 2. Causal filtering operation in (22).
€=0.01
I9(v): Influence function induced bv the optimal at
the nominal model filter.
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UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate
erroliment of approximately 1,500 students with a graduate enrollment of approximately 560. There
are 150 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties.
These range from the classical engineering disciplines of Chemicai, Civil, Electrical, and Mechanical
and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering,
Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer
Science. Within these disciplines there are well equipped laboratories for conducting highly specialized
research. Ail departments offer the doctorate; Biomedical and Materials Science grant only graduate
degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of fuli-time
student enroliment of about 16,400), also offers professional degrees under the schools of Architecture,
Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College
of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant
to the engineering research program. The School of Engineering and Applied Science is an integral
part of this University community which provides opportunities for interdisciplinary work in pursuit
of the basic goals of education, research, and public service.
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